evolve college of massage therapy

Sampling, Statistics and Causation

INSTRUCTOR: DAN BAILEY RESEARCH METHODS IN MASSAGE THERAPY

Why are numbers Important?

Gregor Mendel 1822-1884 Charles Naudin 1815-1899

What Do We Need To Understand Research?

- We need to understand the data.
- We need to understand the type of research.
- We need to understand where the research comes from.
- We need to understand why the research was done
- We need to understand the research question
- * We need to understand how the data was collected.
- We need to understand the data analysis.
- We need to understand if the process was done ethically.
- We need to understand how to formally present the information.

Sampling

Allows researchers to select a sample of a large population that mirrors the characteristics of that population

Representativeness

Two categories of Sampling

- 1. Probability Sampling
- 2. Non-probability Sampling

Sampling

Probability Sampling

Samples selected in accord with probability theory, typically involving some random selection method.

Probability theory – branch of Mathematics that provides tools for sampling techniques to produce representative samples.

Sampling

Probability Sampling

ESPEM – equal probability of selection method: The individuals in the population all have the same probability of being selected

- Simple Random Sampling
- Systematic Sampling
- Stratified Sampling

for the study

Sampling

Non-Probability Sampling

 Sampling not using probability theory
 Used where population parameters might not be available or when certain parameters are required

Sampling

Non-Probability Sampling

Purposive Sampling aka Judgmental Sampling

- Snowball Sampling
- Quota Sampling
- Convenience or haphazard sampling

What Do We Need To Understand Research?

- We need to understand the data.
- We need to understand the type of research.
- ♦ We need to understand where the research comes from.
- We need to understand why the research was done
- We need to understand the research question
- We need to understand how the data was collected.
- We need to understand the data analysis.
- We need to understand if the process was done ethically.
- We need to understand how to formally present the information.

Statistics

"Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write"

H.G. Wells

What is Statistics?

 Statistics: The mathematics of collecting, organizing, and interpreting numerical data.
 Statistics especially concerns methods for figuring out population characteristics by looking at sample characteristics.

Statistics

The most common and important question in statistics for research is this:

Are these two groups the same or are they different?

Types of Statistics

Research begins when there is a question

Different kinds of questions:

Descriptive:

How many men work at Health Sciences? How many hours a week do employees spend at their desks?

Descriptive Statistics: describe the relationship between variables.

Inferential: Does having a science degree help students learn statistical concepts? What risk factors most predict heart disease?

Inferential Statistics: make inferences about the population, based on a random sample.

Measures Of Central Tendency

How do you describe a group of numbers?

The goal of central tendency is to describe the entire distribution of variables with a single measurement.

Mean: The average. Add all the numbers up, divide them by the size of the sample. That's the mean.

Median: If you arrange the numbers in sequence, the median is the one in the middle (if there are two in the middle, add them & and divide that number by 2).

Mode: The most commonly observed number.

Measures Of Central Tendency

"A statistician is someone who can have his head in an oven and his feet in ice, and say that on the average he feels great."

- The mean can be misleading because it can be greatly influenced by extreme scores (very high, or very low scores).
 For example, the average length of stay at
- a hospital could be greatly influenced by one patient that stays for 5 years.Extreme cases or values are called outliers.
- Sometimes the median may yield more information when your distribution contains outliers, or is skewed (not normally distributed).

Mean

Measures Of Central Tendency

Skewed distributions

Test #1 Results: Are these results "positively" or "negatively" skewed?

Mean	85.1%
medium	89.8%
Mode	94.9%
Frequency of mode	3

Measures Of Central Tendency

Range: The difference between the highest and lowest number.

Frequency of the mode: How often the most common number appears. What does this tell us?

Dispersion (also called variability, scatter, or spread) : How spread out a data set is about the mean.

Variance and Standard Deviation are the two main measures of dispersion within a data set.

9

Check Your Understanding: Question

The mean weight of stray dogs at a particular shelter is 70 lbs with a standard deviation of 2.5 lbs. With this information calculate the range of values for the first 3 Standard Deviations;

- 1st Standard Deviation = ____
- 2nd Standard Deviation = ____
- 3rd Standard Deviation = ____

Check Your Understanding: Question

The mean weight of stray dogs at a particular shelter is 70 lbs with a standard deviation of 2.5 lbs.

- 1. What weight is 2 standard deviations below the mean?
- 2. What weight is 1 standard deviation above the mean?
- 3. The middle 68% of dogs weigh how much?

Check Your Understanding: Question

The mean weight of stray dogs at a particular shelter is 70 lbs with a standard deviation of 2.5 lbs.

- 1. 2 standard deviations is 2 * 2.5= (5 lbs). So if a dog is 2 standard deviations below the mean they weigh 70 lbs 5 lbs = 65 lbs
- 2. 1 standard deviation is 2.5 lbs, so a dog 1 standard deviation above the mean would weigh 70 lbs + 2.5 lbs = 72.5 lbs.
- 3. 1 standard deviation above (given in the answer to question 2) is 72.5 lbs; 1 standard deviation below is 70 lbs – 2.5 lbs is 67.5 lbs. Therefore, 68% of dogs weigh between 67.5 and 72.5 lbs

Basis for Comparison	Variance	Standard Deviation
	Variance is a numerical	Standard deviation is a
	value that describes the	measure of dispersion of
Meaning	variability of observations	observations within a
	from its arithmetic mean.	data set.
M/h at is it?	It is the average of	It is the root mean squar
what is it?	squared deviations.	deviation.
Francisco di Sur	Squared units	Same units as the values
Expressed in		in the set of data.
Indicates	How far individuals in a group are spread out.	How much observations of a data set differs from

Statistics Problem

Our Question: The difference between teaching Method A and teaching Method B is 5 points. Is this difference significant or could it have occurred by chance?

Step 1: State the null and alternative hypotheses

Step 2: Calculate the value of the test statistic from your data.

Step 3: Develop a decision rule/rejection region.

Statistics Problem

Hypothesis Testing: is the art of testing if variation between two sample distributions can just be explained through random chance or not.

Secondary question: Are the differences between groups due to a systematic influence rather than chance significant or not?

In order to statistically test this we must assume that all other factors that might contribute to differences are controlled

Statistics Problem

Step 1: State the null and alternative hypotheses

Null Hypothesis: There is no difference between the teaching methods. Both methods are equal.

Alternative Hypothesis: There is a difference between the teaching methods.

Statistics Problem

Step 2: Choose the appropriate test statistic and calculate the value of the test statistic from your data.

Chi-Square Test

t-Test

Statistics: Chi-Square Test

Will test if two variables are independent of each other.

Used to compare categorical variables.

The result of a Chi-Square test is converted to a p-value in order to accept or reject the null.

Statistics: Chi-Square Test

	Cat	Dog	
Men	207	282	
Women	231	242	
By doing t	ho colci	ulations	we come un v

• By doing the calculations, we come up with of P value = 0.043

In this case p < 0.05, so this result is thought of as being "significant" meaning we think the variables are not independent.

In other words, because 0.043 < 0.05 we think that Gender is linked to Pet Preference (Men and Women have different preferences for Cats and Dogs).

Statistics: T-Test

- Widely used to compare the mean of two groups of samples.
- Used to evaluate whether the means of the two sets of data are statistically significantly different from each other.
- The result of the t-test is a 't' value; this value is then converted to a p-value
 - A large t-score tells you that the groups are different.

Statistics: P-Value

- The P-Value or calculated probability, is the probability of finding the observed results when the null hypothesis (H₀) of a study question is true.
- It is the value you use to determine if the difference between the means in your sample populations is significant.
- The P value is compared to the chosen significance level in order to accept or reject the null hypothesis

P > 0.10	No evidence against the null hypothesis. The data appear to be consistent with the null hypothesis.		
0.05 < P < 0.10	Weak evidence against the null hypothesis in favor of the alternative.		
0.01 < P < 0.05	Moderate evidence against the null hypothesis in favor of the alternative.		
0.001 < P < 0.01	Strong evidence against the null hypothesis in favor of the alternative.		
P < 0.001	Very strong evidence against the null hypothesis in favor of the alternative.		

Statistics Problem

Step 3: Develop a decision rule/rejection region.

- The significance level is a measure of the statistical strength of the hypothesis test.
- Typically the 0.05 or the 0.01 level is used. Or put another way, 95% or 99% sure the results are not due to chance.
- For this example we will select 95%.

		Variable 1 Variable		
	Mean	7	6 71	
	Variance	5.	.9 5.4	
t-Test: Two-Sample	Observations	2	2 21	
Assuming equal	Hypothesized			
Variances	Mean Difference		0	
	df	4	1	
	P(T<=t) two-tail	0.00000023	0	
	t Critical two-tail	2.0195409)7	
Conclusion	Reject the Null Hypothesis because p-value is less than 0.05 or 5%. There is enough evidence to conclude the difference between the teaching methods is			
In English	significant.			

Causation vs. Correlation

- Correlation: used to test relationships between quantitative variables or categorical variables.
- Measure of how things are related.

Causation vs. Correlation

The Correlation Coefficient.

A correlation coefficient is a way to put a value to the relationship.

Causation vs. Correlation

- value of between -1 and 1. A "0" means there is no relationship between the variables
- -1 or 1 means that there is a perfect negative or positive correlation (negative or positive correlation here refers to the type of graph the relationship will produce).

Causation

causation noun cau·sa·tion \ko-ˈzā-shən\

Merriam-Webster

> Simple Definition of *causation*: the act or process of causing something to happen or exist. The relationship between an event or situation and a possible reason or cause

Causation

Three main criteria for causal relationship •Correlation

•Time order

•Non-spurious

Causation

Necessary and Sufficient Causes • Necessary Cause – a condition that must be present for the effect to follow • Sufficient Cause – a condition that, if it is present, guarantees the effect in question

Assignment #5: Literature Review

Drawing on the competencies you have developed prepare a research proposal investigating an important issue in massage therapy. The Research Proposal will include background information on the issue being investigated, a literature review of the issue, the methodology being employed, and what the possible outcome of the research might be. The Research Proposal will be double-spaced and typewritten and at least 1500 words in length.

Email it to <u>da.bailey2019@gmail.com</u>